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Abstract: Narrowing the development gap has long been and continues to be a key element of
government aspiration worldwide. Since 2015, the Government of Indonesia has implemented the
village fund (VF) transfer to enhance its rural economy, especially in remote areas. The impact of
the VF on village development may vary greatly depending on the village’s location. This study
examines the causal effects of VF transfer on the rural economic growth of underdeveloped villages
in Indonesia. Using a nighttime light dataset at the village level as a proxy for rural economic growth
and a regression discontinuity design in time, we found a significant improvement in rural economic
growth in underdeveloped villages after the implementation of VF transfer. Our study confirms that
the underdeveloped villages in East Indonesia are growing faster than those in West and Central
Indonesia. The average growth of nightlight after the implementation of VF is approximately 156%
in East Indonesia, 141% in Central Indonesia, and 98% in West Indonesia compared to the growth of
pre-VF. Therefore, there is a strong argument to review the current formula of the VF to narrow the
rural development gap in Indonesia.

Keywords: rural development; sustainable development; impact evaluation; intergovernmental
transfer; remote sensing application; regression discontinuity design

JEL Classification: D63; P25; R11; R12

1. Introduction

The standard of living for most people has been increasing considerably, but address-
ing inequality and marginalization is challenging, with only a few major success stories
to cite (Aiyar and Ebeke 2020; Benjamin et al. 2011; Casey and Owen 2014; Liang 2017).
Millions of people have been left behind and are unable to participate in advancing human
development, technological innovation, and economic growth. The United Nations’ Sus-
tainable Development Goals (SDGs) stipulate that the pledge to leave no one behind means
eradicating all types of poverty; reducing inequality between individuals, citizens, and
communities; and attempting to overcome disparities that can arise from geography or
elements of social identity (United Nations Development Programme 2018). Therefore,
marginalized people, including people in the lagging region, have become priorities in
development programs.

Existing studies have shown that heterogeneous countries with high development dis-
parities between rural and urban areas would face considerable obstacles in achieving the
SDGs due to poverty, agricultural, rural underdevelopment, and public welfare, which are
closely associated to rural regions and play a role in the instability of emerging economies
(Azam 2019; Yin et al. 2019). Indonesia, a country with a diversified economic landscape,
from skyscrapers in Jakarta to mountain peaks in Papua, has dynamic rural-urban dispari-
ties. Figure 1 shows a high degree of inequality between the urban and rural areas in the
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country. Rural areas have higher poverty rates than urban areas, indicating the persistence
of significant regional disparities in Indonesia.
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Rural underdevelopment is frequently regarded as the primary determinant of re-
gional underdevelopment (de Janvry and Sadoulet 2009, 2021) and the leading cause of
the urban-rural gap in Indonesia (Salim et al. 2017). To address rural underdevelopment,
Bednarska-Olejniczak et al. (2020) proposed the application of the SDGs from the bottom
up. In this regard, the lowest level of government plays an important role and requires
adequate resources for implementing regional development to achieve the SDGs.

In Indonesia, the village is the lowest government level. According to the National
Socio-Economic Survey (Susenas), around 65% of Indonesia’s population lives in rural
areas. Following Village Law No. 6 of 2014, the Indonesian government devolved most
of its budgeting authorities to village-level governments to hasten rural development
through village fund (VF) transfers. As an intergovernmental transfer scheme directed
at the lowest government level, VF transfer is an essential national program because of
the substantial funds it distributes (10% of the total intergovernmental transfer). Through
the 1-Village-1-Billion scheme, the VF program in Indonesia is one of the world’s largest
intergovernmental transfers directed to the lowest level of government. Between 2015 and
2020, the Indonesian government transferred more than IDR257 trillion (or about USD18
billion at the current exchange rate) to village governments.

However, studies examining the causal effects of VFs using appropriate impact evalu-
ation methods remain limited. The scarcity of research on this topic is primarily attributed
to difficulties in examining causal effects because of the lack of a counterfactual group.
Previous studies that have attempted to examine the impacts of VFs are largely descriptive
and only based on correlations (see, for example, Arham and Hatu 2020; Fitriyani et al.
2018; Harun et al. 2020; Ismail et al. 2020; Permatasari et al. 2021; Susilo et al. 2021; Wahyudi
et al. 2022). They failed to analyze the causality of the VF program. Therefore, to identify
the causal impacts of VFs on rural economic growth in underdeveloped villages, in this
study, we used a regression discontinuity design (RDD) in time to evaluate villages before
and after VF implementation (Cattaneo et al. 2019a, 2019b; Khandker et al. 2010).

Another potential problem in examining the causal effects of VFs on rural economic
growth is the lack of data on economic activity in underdeveloped villages. Traditionally,
gross domestic product (GDP) has been established as a measure of economic growth
and has become an essential variable in economic growth evaluation (Aiyar and Ebeke
2020; Banerjee and Duflo 2011; Canavire-Bacarreza et al. 2020; Chanda and Kabiraj 2020;
de Janvry and Sadoulet 2021; Liu et al. 2019; Suryahadi et al. 2009). Nevertheless, mea-
suring real GDP in small-area entities, such as the village level, is highly complicated.
According to Henderson et al. (2012), satellite luminosity data can be used as a proxy for
rural economic growth when reliable statistics are unavailable. The idea is that night light
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intensity reflects outdoor and indoor lighting use. As per capita income increases because
of production processes, the use of lighting for consumption and investment activities also
increases. Therefore, a higher intensity of nighttime lights (NTLs) indicates a higher level
of economic activity in the region.

In this study, we examine the causal effects of VFs on rural economic growth in under-
developed villages in Indonesia and contribute to the existing literature based on several
mechanisms. First, we offer an alternative to the existing research by utilizing the RDD in
time as a running variable to evaluate VF impacts on rural economic growth in underdevel-
oped villages. Second, to the best of our knowledge, this is the first study to use the most
appropriate data for describing the rural economic activity, NTL data, because of the lack
of rural economic activity data in underdeveloped villages. Third, we analyze underde-
veloped villages in Indonesia as part of the pledge to leave no one behind, which is the
commitment to the SDGs. Our empirical strategy consists of three steps. (i) We calculated
the monthly average light intensity (ALI) of approximately 26,000 underdeveloped villages
between January 2014 and December 2019 for around 725,000 observations. (ii) We then
ran the RDD to determine the causal effects of VFs on rural economic growth. (iii) Finally,
we examined the validity tests and robustness checks.

This paper is organized as follows. The literature review is presented in Section 2.
Section 3 provides the data and identification strategy. The results and robustness checks
are shown in Section 4. Finally, the conclusion is provided in Section 5.

2. Literature Review
2.1. Overview of Village Development

Decentralization and local government reforms have become popular in developing
countries (Martinez-Vazquez et al. 2017; World Bank 2005). Local governments, which
are closer to the people, are believed to provide public goods more efficiently than the
central government (Arends 2020). Many developing countries have reformed their decen-
tralization policies at the lowest government levels, such as at the village level, including
Thailand, Cambodia, and Vietnam (Boonperm et al. 2013; Romeo and Luc 2004; World Bank
2005). In 2014, the Indonesian government issued Village Law No. 6 of 2014, mandating
decentralization at the village level. The Village Law heralded a new era in the history
of Indonesian decentralization and provided optimism for improving rural development
and community welfare. The policy aims to improve access to and the delivery of public
services, strengthen the responsibilities of village governments, and provide a legal and
financial framework for Indonesian villagers to participate in rural development (Lewis
2015). The devolution of authority to villages also aims to promote equitable access to
services across all regions in Indonesia to address national inequality.

To meet the objective of village development, the government initiated the VF program.
Through the 1-Village-1-Billion scheme, the Indonesian government transferred more than
IDR257 trillion (or about USD18 billion at the current exchange rate) between 2015 and
2020 to village governments. In contrast to Thailand’s million baht VF (approximately
USD24,000 for each village), which was only used to establish a village financial institution
for making loans within villages (Boonperm et al. 2013; Kaboski and Townsend 2012;
Menkhoff and Rungruxsirivorn 2011), VF transfers in Indonesia were used to fund rural
development in around 75,000 villages. As a result, VFs have allocated more resources to
local villages, allowing them to provide services, build infrastructure, boost the potential of
local economies, promote community welfare, and minimize regional disparities. Villages
can now plan and manage the needs of their communities based on local development. It
is expected that village administration and the economy will improve because of increased
financial assistance through VFs.

The Ministry of Villages, Disadvantaged Regions, and Transmigration developed the
Village Development Index (VDI) to classify villages in Indonesia (Table 1). The VDI is an
essential indicator of community development because it measures the level of development
in a village. As a composite index that describes a village’s level of development, the VDI
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covers the following five dimensions: essential services, infrastructure, transportation,
general service, and government administration. Villages are classified based on the VDI
into independent, developing, and underdeveloped villages.

Table 1. Villages based on VDI categorization in 2014–2018.

Underdeveloped Developing Independent Total

2014 19,809 51,003 2895 73,707
(26.88) (69.2) (3.93) (100.00)

2018 14.461 55.369 5.606 75,436
(19.17) (73.4) (7.43) (100.00)

Source: Statistics Indonesia.

Rencana Pembangunan Jangka Menengah Nasional (National Medium-Term Devel-
opment Plan) 2015–2019 outlines the development goals that must be reached during the
next five years in the country. The goal is to decrease the number of underdeveloped
villages by 5000 and improve the number of advanced villages by 2000. Figure 2a,b show
the maps of villages by VDI in 2014 and 2018. Most independent villages are located on
Java and Sumatra islands, whereas the underdeveloped villages are located on the islands
of Kalimantan, Sulawesi, and Papua.

During the initial implementation of the VF policy in 2015, the Indonesian government
set the amount of VFs in each district based on the concept of equity. The VF transfers
were divided into a basic allocation (90%) and a formula-based allocation (10%). The
basic allocation is distributed evenly based on the number of villages in each district,
whereas the formula-based allocation considers population size, poor population size,
area, and geographical difficulties. According to Lewis (2015), the implementation of VFs
in the country was excessively hurried and unplanned, with only a small fraction of the
formula allocation considering Indonesia’s uniqueness and diversity. A reformulation
of VF distribution is required to speed up poverty alleviation, eliminate inequality, and
provide incentives for highly underdeveloped and underdeveloped villages with a high
number of poor people. Therefore, the government improved the policy by modifying
the VF allocation pattern to one that considers village characteristics, such as population
size, inadequate population size, geographical difficulties, and expensive construction
(Figure 3).
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2.2. Village Fund Utilization and the SDGs

To accelerate the achievement of the SDGs, the government and communities play
important roles. Communities, specifically rural communities, have social bonds, together-
ness, and solidarity (Soerjatisnanta and Natamihardja 2016). Villages have a democratic
culture in which openness, involvement, and deliberation are the foundations for decision-
making. This description strongly engages with the essential principles in implementing
the SDGs and could, therefore, encourage the adoption of the SDGs by village governments.

As stated in the Ministry of Village Regulation No. 5 in 2015, VFs are prioritized
to achieve village development goals (including enhancing rural welfare, improving the
quality of human life, and eradicating poverty) and community empowerment. VFs fulfill
basic needs and promote infrastructure development, local economic development, and
the sustainable use of natural resources and the environment (Figure 4). The use of VFs
for community empowerment is realized through the following four priorities: village
planning improvement, capacity building, supporting village-owned enterprise operations,
and health promotion.
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Soerjatisnanta and Natamihardja (2016) developed a map of VF allocations that cor-
responded to the SDGs, as shown in Table 2. The use of VFs can help realize the SDGs,
except for three SDG agendas. A possible explanation is that the village government has
no authority over the three SDG agendas. Therefore, VFs may be used to support the
achievement of the SDGs through the enactment of appropriate regulations that allow these
funds to be used for accomplishing the SDGs (Permatasari et al. 2021).

Table 2. SDG agenda and VF priority.

Goal SDGs Agenda Village Fund Priority in 2019

1 No poverty • Increasing the economic income for poor families
• Reducing poverty

2 Zero hunger
• Improving rural food safety
• Agriculture for food safety
• Reservoir and irrigation construction

3 Good health and well-being
• Meeting public health needs
• Stunting prevention and management
• Improved nutrition

4 Quality education • Culture and education
• Programs for early childhood education

5 Gender equality
• Support for integrated services to promote the health

of pregnant women and nursing mothers
• Women empowerment

6 Clean water and sanitation Supply of clean water and sanitation

7 Affordable and clean energy Construction and development of fundamental
infrastructure for energy development

8 Decent work and economic growth • Improvement of village products
• Product establishment and development

9 Industry, innovation, and infrastructure Village infrastructure procurement, building, development,
and maintenance in compliance with village authority
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Table 2. Cont.

Goal SDGs Agenda Village Fund Priority in 2019
10 Reduced inequalities Increase in non-agricultural economic business employment
11 Sustainable cities and communities Transportation and the environment

12 Responsible consumption and production
• Agricultural business for food safety
• Agricultural business productivity, including

production, distribution, and marketing
13 Climate action -
14 Life below water -

15 Life on land • Managing the outcomes of natural and social disasters
• Environmental protection

16 Peace, justice, and strong institutions • Social conflict prevention
• Communication and information

17 Partnership for the goals -
Source: Soerjatisnanta and Natamihardja (2016), author’s modification.

3. Material and Method

We used four main steps to evaluate the impacts of VF transfer on underdeveloped
villages in Indonesia. First, we collected basic data for impact evaluation. Second, we
corrected NTL data by referring to previous studies. Third, we evaluated the impacts of
VFs on rural economic growth using the RDD. Finally, we analyzed the results (Figure 5).
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3.1. Data

This study used villages as the unit of analysis. We obtained monthly NTL data
from the cloud-free version of the Visible Infrared Imaging Radiometer Suite-Day Night
Band (VIIRS-DNB) by the National Oceanic and Atmospheric Administration to identify
the rural economic growth of each village from January 2014 to December 2019 (https:
//eogdata.mines.edu/nighttime_light accessed on 12 January 2021). In VIIRS-DNB satellite
data, Indonesia is located on tile 3 (75 N/60 E to 00 N/120E) and tile 6 (00N/60E to
65S/120E). NTL data were matched with the village map data sourced from Statistics
Indonesia to calculate the ALI per village. We excluded DKI Jakarta and other urban areas
because they did not meet the requirements.

The research was limited to underdeveloped villages based on their 2014 VDIs. The
total number of observations in this study was about 725,000. We used village geographic
features, such as area, elevation, ruggedness, temperature, and topography, as covari-
ates. We used a map of administrative village boundaries from Statistics Indonesia to
determine the village area. We also extracted the National Aeronautics and Space Admin-
istration and the United States Geological Survey satellite data to determine how high
each village was and how rough the terrain was. In addition, we used satellite data from
MODIS/MOD11A2006 Terra Land Surface Temperature and Emissivity to obtain the tem-
perature data for each village. Then, we used Village Potential Data conducted by Statistics
Indonesia to get the topography for each village.

3.2. Measuring Rural Economic Growth from Average Light Intensity

Several studies have established a potential relationship between NTL and a variety of
other factors, such as economic activity (Gibson et al. 2021; Henderson et al. 2012; Laurini
2016; Mellander et al. 2015; Gibson et al. 2020), poverty evaluation (Engstrom et al. 2017;
Noor et al. 2008; Pan et al. 2020), regional inequality (Ivan et al. 2020; Lessmann and
Seidel 2017; Wu et al. 2018; Zheng 2021), human well-being measurement (Elvidge et al.
2012; Ghosh et al. 2013), and urban structure (Yudhistira et al. 2019). NTL imaging gives
researchers several advantages in terms of accessibility, efficiency, spatial resolution, and
processing time. However, as a proxy for economic activity, NTL has a limitation because
not all types of economic activities can be recorded at night. The lack of power in rural
areas impedes the accuracy of NTL estimates of rural economic activity. Nevertheless, our
observations show that Indonesia has nearly reached a 100% electrification rate, suggesting
that electricity is available in practically every section of the country. In this study, we used
NTL to predict rural economic growth when there were insufficient village-level economic
activity data.

To measure light density, we referred to the studies of Doll et al. (2006); Ghosh et al.
(2013); Guerrero and Mendoza (2019); Henderson et al. (2012); Marx and Gosh (2014);
and Singhal et al. (2020). Before measuring the ALI, we adjusted the initial VIIRS-DNB
data by removing stray light, lighting, moon illumination, and cloud cover in tropical
countries. We modified the approaches of Shi et al. (2014) and Yu et al. (2015) to conduct
this procedure. The following steps were taken to adjust NTL: (1) masking was created by
defining pixels to positive DN values; (2) negative pixel values were transformed to zero;
and (3) VIIRS-DNB data were modified using the optimal threshold value determined by
the economic development of Indonesia’s major cities. The most relevant criterion in this
investigation was DKI Jakarta. We used night light intensity to measure economic activity
in the community after removing outliers. Figure 6a,b show the NTL on Java Island before
and after the cleaning process.

https://eogdata.mines.edu/nighttime_light
https://eogdata.mines.edu/nighttime_light
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After the dataset correcting process, the ALI was calculated as the sum of all pixels
with positive intensity values divided by the total number of pixels with positive intensity
values in the village area (Yu et al. 2015).

ALIi,t =
Ti,t

Ni,t
(1)

where ALIi,t is the ALI in village i at time t, and Ti,t indicates the total amount of corrected
NTL on village i at time t, as measured by the sum of all pixels in the administrative village
boundaries’ area. Ni,t is the total number of pixels with a positive luminosity value in the
village i at time t.

3.3. Empirical Strategy

A randomized controlled trial (RCT) is one of the most well-known impact evaluation
tools. The RCT is the gold standard for determining whether a program is effective.
However, conducting an RCT to evaluate a program is complicated. The primary challenge
is finding a good counterfactual, namely, the condition that would have happened to a
participant if they had not been exposed to the program (Khandker et al. 2010).

The VF program was applied to all villages in Indonesia; as a result, estimating the
causal effects of VFs was challenging due to the lack of a counterfactual group. To overcome
this challenge, we applied the RDD in time as a running variable, in a similar way to other
studies (see Clark et al. 2020; Luechinger and Roth 2016; Yudhistira et al. 2020). The RDD is
frequently used in program evaluation and treatment effect settings (Cattaneo et al. 2014,
2019a, 2019b, 2021; Cattaneo and Vazquez-Bare 2017; Kolesár and Rothe 2018). Generally,
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the following three fundamental components define the RDD: a score (also known as a
running variable), a cutoff, and a treatment procedure that places observations on the
treatment or control, depending on the score and cutoff. This study used distance to
a month of VF transfer as the assignment variable; therefore, our RD applications had
discrete scores.

A critical issue when deciding how an RDD with a discrete score can be analyzed is
the number of distinct mass points. Cattaneo et al. (2019b) highlighted that when the RD
running variable is not a continuous random variable, local polynomial methods may not
be directly applicable. Local polynomial approaches may still be appropriate when the
score is discrete, but the mass points are sufficiently large. Nevertheless, local polynomial
algorithms will be inapplicable if the number of mass points is extremely small.

A preferable option in the RDD with a discrete running variable and a few mass points
is to use local randomization methods. The running variable in this study was discrete,
with 72 mass points, which means that our mass points were small. Therefore, our estimates
in this study were derived from the local randomization method. In our RD estimation, we
also needed to select a bandwidth close to the cutoff and compare the average outcomes
above and below the cutoff.

The local randomization approach is based on the concept that the treatment assign-
ment is as good as a random assignment in the neighborhood of the cutoff. Cattaneo et al.
(2014, 2019b) stated that there is a small window around the cutoff so that for all units with
scores within the window, the cutoff is assigned as in a randomized experiment, which is
defined as a random assignment. If the score is discrete, the local randomization technique
can eliminate the requirement for window selection because the small window seems to be
well defined (Calonico et al. 2014, 2021; Cattaneo et al. 2019b; Cattaneo and Vazquez-Bare
2017; Kolesár and Rothe 2018).

To define an appropriate cutoff for building counterfactual data, we assumed that
the effects of VFs started in January 2017 based on several considerations. First, the
disbursement of VFs in 2015 only covered 20% of the total villages, so those villages that
received VFs in 2015 were dropped from the observations to obtain counterfactual data.
Second, in 2016, VFs were transferred in the following three tranches: 40% in April 2016,
40% in August 2016, and 20% in October 2016. Finally, all villages received and used their
VFs, which started in January 2017. Therefore, January 2017 is the best cutoff to distinguish
the effects before and after the VF transfers.

The data are compiled so that the application of the VF transfer policy genuinely
follows the conditions of the time used, namely, using a cutoff in January 2017; before
January 2017 is the period before the implementation of the VF policy, and after January
2017 is the period after the enactment of the VF transfer. Our strategy for estimating rural
economic growth using the night light indicator assumes that the running variable can
explain the discontinuous transfer of VFs covering all villages in Indonesia in 2017.

We estimated the impacts of VF transfers on rural economic growth in underdeveloped
villages in Indonesia, as measured by the monthly ALI. To determine the causal effects of
VFs, we used specifications of the following form:

ln yit = αi + βDi + X′γ + θj f (t) + eit (2)

In this equation, the dependent variable ln yit is the rural economic growth measured
with the ALI in village i at month t, presented in a natural logarithm. The variable of interest
is the dummy variable Di that captures the VF transfer policy. The value is 1 for the period
after the VF transfer and 0 otherwise. We controlled for Equation (2) by adding covariates
X′, including geographical conditions, such as area, elevation, ruggedness, temperature,
and a dummy for the topography area, whose value is 1 for the mainland and 0 otherwise.
f (t) is the running variable with a polynomial time trend.
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4. Result and Discussion
4.1. Results of the ALI Calculation

Before the description of the core results of the RDD method, examining the ALI in
underdeveloped villages in Indonesia from 2014 to 2019 is instructive (Figure 7). Indonesia
is often divided into the west, central, and east regions. Each region contains islands, which
are as follows:

(1) West Indonesia, an advanced region, consists of Sumatra, Java, and Bali islands.
(2) Central Indonesia, a developing region, consists of Kalimantan, Sulawesi, and Nusa

Tenggara islands.
(3) East Indonesia, a remote region, consists of Maluku and Papua islands.
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As illustrated in Figure 7, the ALI dramatically increased in all regions after VF
transfers were implemented. A significant increase in the ALI indicates that VF transfer
results in improvements in rural economic growth in underdeveloped villages. What
stands out in Figure 7 is the relatively high disparity between regions, with the ALI in
West Indonesia being significantly higher than that in the other regions. In general, most
development is concentrated in West Indonesia. Therefore, Central and East Indonesia
must pursue development to avoid falling behind.

We compared the characteristics of the treatment and control villages based on the im-
plementation of VF transfer. Table 3 presents the descriptive statistics for the pre (2014–2016)
and post (2017–2019) treatments. Generally, geographical features do not show significant
differences before and after VF transfer. However, if there was a discrepancy, a possible
explanation is forming new villages and expanding existing ones. This is reasonable be-
cause of several factors, including village governments’ management of the VF transfer
policy, which expressed the desire to manage their VFs independently. Another possible
explanation is that new villages are formed because of a desire to accelerate an area’s
development and empowerment process. Considering factors such as area and population,
village communities assume that if they still join the old villages, the development and em-
powerment process of these villages will slow down. Therefore, the community proposed
the formation of new villages.

Table 3. Descriptive statistics of underdeveloped villages in Indonesia.

Variable Before Village Fund Issued After Village Fund Issued

Obs Mean Std. Dev. Obs Mean Std. Dev.
ALI 330,277 0.206 0.51 394,975 0.33 0.54

Area size (km2) 398,160 53.585 150.75 444,317 50.50 143.90
Elevation (m) 398,160 504.798 698.79 444,317 527.83 717.43

Ruggedness Index 398,160 37.138 34.91 444,317 38.64 35.41
Temperature (◦C) 334,553 28.250 4.41 370,851 28.06 4.44

Topography 398,160 0.59 0.49 444,317 0.59 0.49
Source: authors’ calculation.
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4.2. Baseline Estimates

In this section, we begin our discussion by defining graphical presentations and the
technique for generating them in the RDD framework. Graphical representations are a
simple, yet effective, means of visualizing the RDD identification technique, considering
that (1) they should be the initial step in any RD analysis, (2) they have an intuitive way of
visualizing the RD approach, and (3) the mechanisms used for graphical analyses serve as
the foundation for our discussion of empirical estimation (Calonico et al. 2015; Cattaneo
et al. 2019a; Jacob et al. 2012).

Furthermore, the RD plot shows the monthly ALI across the Indonesian islands
from January 2014 to December 2019 (Figure 8). On the right-hand side of the cutoff,
after January 2017, there was an increasing trend in the ALI. We fitted a local linear
regression to estimate the value for each side of the cutoff in January 2017, when VF
transfers were implemented for all villages in Indonesia. The scatterplot indicates an
apparent positive relationship between the running variable and the outcome. Thus, after
VFs were transferred, underdeveloped villages tended to have a higher ALI than before.
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Table 4 displays the results from the estimation using Equation (2). Panel A depicts
the RDD estimate without covariates across the region, whereas Panel B shows the RDD
estimate using all covariates (area, elevation, ruggedness, temperature, and topography).
We found a significant increase in the ALI as a proxy for rural economic growth of around
115.9%, with a robust p-value less than 0.01 after the implementation of VF transfer (Table 3,
Panel A, Column 1). Our findings show that VF transfer improves the quality of life
in underdeveloped villages. This result is similar to those obtained by Azam (2019);
Chandoevwit and Ashakul (2008); and Liu et al. (2019), in which an increase in the capacity
level of development (authority and funds) helps to improve economic growth. This
finding is also consistent with those obtained by Muinelo-Gallo et al. (2017); Kim and
Samudro (2017); Liu et al. (2019); and Zheng (2021). They found a positive impact of
intergovernmental transfer on economic growth.
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Table 4. Impacts of VFs on rural economic growth in underdeveloped villages: baseline results of
the RDD.

Dependent Variable:
Indonesia West

Indonesia
Central

Indonesia
East

IndonesiaAverage Light Intensity
(Natural Logarithm)

PANEL A
RD_Estimate 1.159 *** 0.947 *** 1.384 *** 1.537 ***

(0.014) (0.020) (0.022) (0.022)
Additional covariates NO NO NO NO

Observations 725,252 303,136 196,238 225,878

PANEL B
RD_Estimate 1.281 *** 0.981 *** 1.406 *** 1.559 ***

(0.014) (0.022) (0.023) (0.024)
Additional covariates YES YES YES YES

Observations 616,552 245,915 180,442 190,195
Source: authors’ calculation. Standard errors in parentheses: *** p < 0.01.

Furthermore, we found that the impacts of VFs on rural economic growth across
regions are statistically significant at the 1% level in the same direction. The highest
increase in rural economic growth because of VFs can be observed in East Indonesia, a
remote area, demonstrating a 153.7% increase. The lowest increase can be observed in
West Indonesia, an advanced area. The heterogeneous outcome of VF transfer programs
might be determined by other factors that help villages obtain the benefits of VFs, such as
financial literacy (Harun et al. 2020), management, and public knowledge dissemination
(Arifin et al. 2020).

In short, our findings indicate that poor regions grow faster than rich regions. This
unexpected result could be a convergence indicator that requires further investigation.
A large and growing body of literature has investigated convergence through different
approaches, methods, and ways (Islam 2003). In turn, the debate has led to many different
interpretations of convergence. Nevertheless, our results might be available as a starting
point for analyzing whether convergence occurs among villages in Indonesia.

4.3. Tests of the Validity of the RDD Approach

We conducted validation tests based on the treatment impact on the predetermined
covariates defined before the treatment was applied. All predetermined covariates were
assessed using the same technique as the outcome of interest. Given that the treatment
could not have influenced the predetermined covariates, the null hypothesis of no treatment
effect must not be rejected.

This study used a dataset of around 725,000 observations, with 72 mass points. This
number was relatively small, so we used local randomization for the validity test. An
advantage of the local randomization conceptual framework is that it can be used even
with few mass points in the running variable. With a window of (−1, 1), the results of the
predetermined covariates are reported in Table 5. The Fisherian null hypothesis is that VFs
do not affect the covariates. The treated and controlled villages appear identical in area,
elevation, ruggedness, temperature, and dummy topography.

Table 5. Effects of RD on the predetermined covariates, local randomization approach.

Variable
Mean of Diff-in-Means Fisherian Number of Observation

Controls Treated Statistics p-Value Controls Treated

Area 54.794 51.675 −3.119 0.076 398,160 444,317
Elevation 540.770 540.016 −0.754 0.937 398,160 444,317

Ruggedness 38.139 38.971 0.833 0.030 398,160 444,317
Temperature 27.331 27.366 0.035 0.505 334,553 370,851
Topography 0.578 0.575 −0.004 0.478 398,160 444,317

Source: authors’ calculation.
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We also created an RD plot of the covariates and identified the influence of VF trans-
fer on the covariates. The following five covariates were considered: area, elevation,
ruggedness, temperature, and topography. Figure 9 presents the findings and supports
our hypothesis. We did not find any discontinuity close to the threshold, as anticipated.
Therefore, the formal and graphical analyses indicate that the villages above and below the
cutoff are similar in geographical features.
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Meanwhile, covariates in the RDD estimates reveal a similar magnitude of VF impacts
with a higher coefficient. Table 3, Panel B, presents the RDD estimates with covariate
variables. We find strong evidence that VFs help to improve rural economic growth. Since
VF transfer has been implemented, rural economic growth in East Indonesia has dramati-
cally increased by 155.9%. Our findings show that remote areas have experienced higher
increases in rural economic growth. By contrast, as a developed region, West Indonesia
has experienced the least increase in rural economic growth after the implementation of
the VF transfer. The comparison of the two results, the RDD with and without covariates,
provides strong evidence that VFs improve the rural economic growth in underdeveloped
villages in Indonesia, with poor regions growing faster than rich regions. This surprising
result may indicate convergence, which could be the starting point of further research.

This interesting finding also shows that the use of night light data is not only a proxy
for economic growth, population, inequality, urbanization, and poverty, as discussed above,
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it also allows us to add a new dimension, the convergence phenomenon at the village
level, which is not possible using the available official data. Night light data can provide
information up to about 0.86 sq. km at the equator (Chanda and Kabiraj 2020). Even the
smallest events can be tracked and evaluated in greater detail using night light data.

As our unexpected findings show, the initial phenomenon of convergence at the village
level indicates that the government seems to fulfill its commitment to developing Indonesia
from the periphery by strengthening and transferring authority and funds to villages.
Through the 1-Village-1-Billion policy, the government gave more resources to villages and
ensured that remote areas could catch up with sustainable rural development. VF is similar
to the Solecki Fund in Poland (see Bednarska-Olejniczak et al. 2020), which assists rural
governments in achieving the SDGs. Of course, using prioritized VFs in line with the SDG
agenda is a step toward fulfilling the commitment of leaving no one behind.

4.4. Robustness Checks

We conducted the robustness checks following the work of Luechinger and Roth (2016)
and Yudhistira et al. (2020), who performed robustness checks by changing the sample
length and polynomial level and determining how well estimates of VF impact hold up
with different polynomial orders. The two alternative sample lengths were constructed
by reducing the years for similar underdeveloped villages in Indonesia. As a result,
our observations were divided into the following two periods: 2014–2018 and 2015–2019
(Table 6). The robustness checks supported the baseline results. For 2014–2018, the estimates
were robust in sign and magnitude, being statistically significant at the 1% level, except for
polynomial order 3. Aside from the quadratic model, the estimates for 2015–2019 were also
stable in terms of sign and size, and they were statistically significant at the 1% level.

Table 6. Robustness check: the impact of VFs under polynomial orders.

Polynomial Order 2014–2018 2015–2019

One 0.014 *** 0.145 ***
(0.004) (0.004)

Two 0.091 *** −0.081 ***
(0.004) (0.004)

Three −0.114 *** 0.109 ***
(0.005) (0.005)

Four 0.039 *** 0.065 ***
(0.005) (0.005)

Five 0.066 *** 0.135 ***
(0.005) (0.005)

Six 0.155 *** 0.222 ***
(0.006) (0.005)

Seven 0.153 *** 0.221 ***
(0.006) (0.005)

Eight 0.292 *** 0.248 ***
(0.006) (0.005)

Nine 0.326 *** 0.242 ***
(0.006) (0.005)

Ten 0.362 *** 0.238 ***
(0.006) (0.005)

Observations 501,018 536,220
Source: authors’ calculation. Note: standard errors are reported in parentheses. VF transfer is the dummy variable,
the value of 1 after January 2017 and 0 otherwise. Other covariate variables of the islands are the same as the
island estimates in Table 4. *** Significant at the 1% level.

5. Conclusions

This study sought to evaluate the VF’s impact on rural economic growth in under-
developed villages across Indonesia. Given the lack of available data to measure rural
economic growth at the village level, we used monthly NTL as a proxy for rural economic
activity for approximately 26,000 villages from January 2014 to December 2019. After



Economies 2022, 10, 217 16 of 19

correcting the NTL data, we used RDD in time. Our results show that the VF effectively
increased rural economic growth in underdeveloped villages in Indonesia.

Our findings also reveal that facilitating the VF transfer in remote East Indonesia led to
a more significant change in rural economic growth than in other areas of the country. The
results indicate that poor areas grew faster than the more prosperous ones. This unexpected
finding could be a convergence indicator that requires further investigation. The Indonesian
government has expressed commitments to leave no one behind, as pledged in the SDGs,
and in ensuring that remote areas can catch up with development.

Furthermore, the heterogeneous outcome of the VF transfer may encourage policymak-
ers to focus on relevant village characteristics that can be addressed to increase the utility
of the VF transfer, such as the availability of basic infrastructures. These adjustments could
better improve rural economic growth through various innovations, such as determining
an allocation formula for the VF that could best foster convergence. This can be achieved
by considering other sources of revenue generated by the village beyond the transfers from
the central government that need to be taken into the allocation formula to speed up the
catching up of the left-behind villages. Additionally, determining an allocation formula can
be achieved by reducing the basic allocation and adding more to the formula allocation
and affirmation allocation. The geographical difficulty index component in the formula
allocation also should be higher than the current percentage. Nevertheless, as our study
could not provide an exact formula number, further studies are needed to simulate the
optimum VF formula.

Beyond its contributions, this research points toward areas to be explored in future
research. For instance, this study does not consider political behavior at the village level,
such as leadership and elite capture at the village level, which might affect the impacts of
the VF. Moreover, this study only analyzes the VF’s impacts on rural economic growth in
underdeveloped villages. Thus, our claim for the VF’s role in convergence is not without
caveats, as our analysis demonstrated.
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