Money that grows on trees

Household consumption during an agricultural export boom

Allison Derrick

University of Wisconsin-Madison aderrick@wisc.edu Presented at Forum Kajian Pembangunan, SMERU in Jakarta

October 26, 2017

How do agricultural export booms affect households in developing countries?

- Expect boom to raise consumption and a bust to lower it
- Setting: the palm oil price boom and bust in Indonesia
- Does household expenditure follow the expected pattern?
- Expenditure is a measure of consumption, proxy for income
- Deeper analysis of producer characteristics

- Global price of palm oil determines aggregate palm oil revenue
- But how much of this revenue reaches households?
- Identify changes in household expenditure through these exogenous price changes
- Compare small to large plantations: land ownership
- Compare new to established plantations: fixed costs and price exposure

Comparison of price indices for several commodity categories, 1995-2015

Estate crops harvested land area in Indonesia ('000 Ha), 1995-2015

Estate crops production in Indonesia ('000 tons), 1995-2015

Preview of results

I compare palm oil producer to non-producer districts during the boom and bust.

- Producing districts: average household expenditure rises during the boom and falls during the bust
- Expenditure is more sensitive to a price decrease than an equivalent price increase

Producer characteristics

- Small plantations: average household expenditure rises during the boom and falls by the same magnitude during the bust
- Large plantations: expenditures do not significantly change during either period
- New and established producer districts: expenditure also rises and falls, though the increase during the boom is larger for established producers

Health and education spending

- Education spending does not change during the boom and falls during the bust
- Health spending increases during the boom by more than total expenditure, falls again during the bust

Expands on current literature

- Large literature on energy booms in the US and Canada (Black et al, 2005; Marchand 2012; Weber 2012; Jacobsen and Parker 2015)
- Local impacts of a Peruvian gold mine (Aragon et al, 2013; Zambrano 2014)
- All find that booms increase local incomes and employment
- Following a bust, these trends are reversed
- Literature lacks analysis of agricultural boom

Specialization in agricultural exports

- Extractive resource v.s. agricultural export boom:
 - Agriculture is more labor intensive
 - Rents from extractive resources easily captured by a few
- Similar in other ways:
 - A type of resource curse
 - Exposes economy to high volatility through volatile global prices

Palm oil and poverty reduction

- Study found palm oil plantation expansion reduced poverty in Indonesia from 2000 to 2008 (Edwards 2015)
- Flaw: examines period during which price tripled
- Does not answer what happened after the bust
- I expand the time frame to 2015

Policy debate: the economy and the environment

- Debate has traditionally been about economic benefits v.s. environmental costs
- Environmental costs are large: deforestation, carbon emissions
- Economic benefits are much smaller than previously thought

Modifying a classic model to new context

- Traditionally used with energy export booms
- General equilibrium model with three goods and three factors
- I modify the booming sector model (Corden and Neary 1982) to an agricultural export boom
 - Different assumptions about factor intensity
 - Use price shock instead of resource discovery
- Model generates static, short-run predictions

- Goods: agricultural export, other export, and nontraded goods
- Factors: labor, capital, and land
- Small, open economy (price taker)
- Assume factors are fixed in the short run
- Supply of palm oil is fixed in the short run—three years from planting seedlings to maturity
- In the long-run, no factors are fixed

Model predictions: positive price shock

- 1. Increase in the return to palm oil producing land
- 2. Increase in the nominal wage, ambiguous effect on real wage
- 3. Decrease in nominal and real return to capital
- 4. Expansion of palm oil industry
- 5. Contraction of the other traded sector
- 6. Expansion of nontraded sector

Sources

- Household expenditure and other characteristics: SUSENAS (Indonesian government-collected household surveys), 2000-2015
- Instrument for palm oil producer district: agroclimatic suitability for palm oil cultivation data (FAO)
- Palm oil production data and district characteristics: INDO-DAPOER (World Bank), 2001-2010
- Commodity prices: International financial statistics (IMF), 1980-present
- Aggregated data up to district level to create a pseudo-panel from 2000 to 2015

District classifications

(a) By plantation age

(b) By plantation ownership

Parallel trend

Parallel trend: education spending

Parallel trend: health spending

Dynamic effects by year

$$E_{it} = \beta_t Producer_i \times Year_t + \gamma_t + \alpha_i + \epsilon_{it}$$

- E_{it} : district average household expenditure
- Producer_i: indicates producer
- Year_t: year indicator
- γ_t : period fixed effect
- α_i : district fixed effect

Producer and non-producer districts: percent

Producer type and dynamic effects

$$E_{it} = \delta_{(Type,t)} Type_i \times Year_t + \gamma_t + \alpha_i + \epsilon_{it}$$

- E_{it} : district average household expenditure
- *Type_i*: indicates producer type
- Year_t: year indicator
- γ_t : period fixed effect
- α_i : district fixed effect

Smallholder and corporate producers

New and established producers

Next step

- Household expenditure in producing districts follows the palm oil price
- Next step: collapse data to "boom" and "bust"
- Estimates more robust

Producers and non-producers

$$\Delta E_{it} = \phi_1 Producer_i \times Period_1 + \phi_2 Producer_i \times Period_2 + \gamma_t + \eta_{it}$$

- ΔE_{it} : eight year change in district average household expenditure
- Producer_i: indicates producer
- Period₁: indicates 2000-2008
- Period₂: indicates 2008-2015
- γ_t : period fixed effect

Change in household expenditure in producing districts

(1)	(2)	(3)
0.058***	0.070***	0.058**
(0.022)	(0.024)	(0.022)
-0.074***	-0.045^{**}	-0.056**
(0.017)	(0.020)	(0.018)
No	Yes	No
Yes	Yes	Yes
604	534	534
0.70	0.70	0.70
	(0.022) -0.074*** (0.017) No Yes 604	(0.022) (0.024) -0.074*** -0.045** (0.017) (0.020) No Yes Yes Yes 604 534

By plantation size and age

$$\Delta E_{it} = \lambda_{(Type,t)} Type_i \times Period_t + \gamma_t + \eta_{it}$$

- ΔE_{it} : eight year change in district average household expenditure
- Type_i: indicates the producer type
- Period_t: indicates period 2000-2008 or 2008-2015
- γ_t : period fixed effect

Smallholder and corporate producers

	(1)	(2)	(3)
Corporate \times Period 1	0.040	0.050	0.040
	(0.040)	(0.045)	(0.040)
Corporate \times Period 2	-0.003	0.012	0.003
	(0.028)	(0.031)	(0.029)
Smallholder $ imes$ Period 1	0.063***	0.076***	0.063*
	(0.023)	(0.025)	(0.023)
Smallholder \times Period 2	-0.090***	-0.059***	-0.071*
	(0.018)	(0.021)	(0.019)
Baseline controls	No	Yes	No
Period FE	Yes	Yes	Yes
Observations	604	534	534
R^2	0.71	< •0.70 ₱ ► < ₹	→ ◀ ≣ ▶0.7€0 ⋖

32 / 52

Coefficient plot for corporate and smallholder producers

New and established producers

	(1)	(2)	(3)
New × Period 1	0.024	0.031	0.024
	(0.026)	(0.028)	(0.026)
New × Period 2	-0.051**	-0.027	-0.035
	(0.025)	(0.028)	(0.026)
Established $ imes$ Period 1	0.083***	0.098***	0.083***
	(0.027)	(0.030)	(0.027)
Established \times Period 2	-0.089***	-0.055**	-0.071***
	(0.018)	(0.023)	(0.020)
Baseline controls	No	Yes	No
Period FE	Yes	Yes	Yes
Observations	604	534	534
R^2	0.71	< 0.70 ₱ ► < =	
	-	-	34 / 52

Coefficient plot for new and established producers

Concerns about endogeneity

- The development of a palm oil industry in a given district could be correlated with household expenditure
- For instance, palm oil corporations could chose to locate in districts where households are poor and unskilled labor is relatively cheap
- Districts with many poor, land-owning households self-select into palm oil cultivation expecting higher profits and household incomes
- I use the percentage of district land highly suitable for palm oil production as an instrument for the producer indicator

Land suitability for oil palm cultivation

IV estimation

First stage:

$$\begin{aligned} &\mathsf{Producer}_i \times \mathsf{Period}_1 = \mathsf{Suit}_i \times \mathsf{Period}_1 + \mathsf{Suit}_i \times \mathsf{Period}_2 + \gamma_t + \eta_{it} \\ &\mathsf{Producer}_i \times \mathsf{Period}_2 = \mathsf{Suit}_i \times \mathsf{Period}_1 + \mathsf{Suit}_i \times \mathsf{Period}_2 + \gamma_t + \eta_{it} \end{aligned}$$

Second stage:

$$\Delta E_{it} = \phi_1 \operatorname{Producer}_i \times \operatorname{Period}_1 + \phi_2 \operatorname{Producer}_i \times \operatorname{Period}_2 + \gamma_t + \eta_{it}$$

IV: Change (2000-2008 and 2008-2015) in district average household expenditure

	(1)	(2)	(3)
$Producer \times Period \ 1$	0.298*** (0.092)	0.267*** (0.102)	0.298*** (0.092)
$Producer \times Period \ 2$	-0.295*** (0.067)	-0.315*** (0.091)	-0.285*** (0.078)
Baseline controls	No	Yes	No
Period FE	Yes	Yes	Yes
Observations R^2 F-Statistic	604 0.60 208.74	534 0.60 36.76	534 0.59 172.85

Coefficient plot for IV estimates

Panel OLS estimates are downward biased

Discussion

- Boom: ↑ 34 percent
- Translates into elasticity of 0.1
- Bust: ↓ 25 percent
- Translates into an elasticity of 0.5

Household expenditure is much more responsive to a negative shock

Education and health spending

- Next look at specific spending on education and health
- These two categories can be seen as spending on human capital
- Follow same IV strategy as with total expenditure

Spending on education (IV)

	(1)	(2)	(3)
$Producer \times Period \ 1$	-0.049 (0.285)	0.069 (0.359)	-0.054 (0.236)
$Producer \times Period \ 2$	$-1.061^{***} \ (0.408)$	-0.948*** (0.354)	$-1.071^{**} \ (0.471)$
Baseline controls	No	Yes	No
Period FE	Yes	Yes	Yes
Observations R^2 F-Statistic	604 0.98 7649.83	534 0.99 1511.39	534 0.98 7065.72

Coefficient plot for education estimates

Spending on health (IV)

	(1)	(2)	(3)
Producer × Period 1	1.111***	1.263***	1.119***
	(0.331)	(0.387)	(0.319)
$Producer \times Period \ 2$	-1.113***	-0.926***	-1.070***
	(0.309)	(0.312)	(0.352)
Baseline controls	No	Yes	No
Period FE	Yes	Yes	Yes
Observations R^2 F-Statistic	604	534	534
	0.98	0.98	0.98
	5794.15	1111.25	5162.24

Coefficient plot for health estimates

Discussion

Education:

- Boom: no change
- Bust: ↓ 65 percent
- Translates into an elasticity of 1.3

Health:

- Boom: ↑ 200 percent
- Translates into elasticity of 0.7
- Bust: ↓ 67 percent
- Translates into an elasticity of 1.3

- Only see aggregate changes in a district; does not say anything about the response of specific households
- Does not take into account local CPI changes; effect on real consumption could be negative
- These are only short-run estimates—more time is needed to observe long-run effects

Conclusions (1)

Key empirical results:

- Household spending is more sensitive to the boom than the bust
- Smallholders are more exposed to price changes, while corporate districts are more insulated
- Spending on health and education exhibit drastically different behavior

- This paper offers a richer theory for the impact of commodity price shocks on household consumption
- Emphasize that the structural properties of commodity production matter for predicting the impact of a boom and bust
- Palm oil production may not be a sustainable poverty reduction strategy because benefits to households rely on a high global price

Future work

- Estimate changes in employment by sector, labor movements between sectors
- Impact of the bust on poverty
- Spillover effects into adjacent but non-producing districts
- Are households vulnerable to negative shocks because they lack access to savings and credit?